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A B S T R A C T

Space-filling designs that possess high separation distance are useful for computer experiments.
We propose a novel method to construct high-dimensional high-separation distance designs. The
construction involves taking the Kronecker product of sub-Hadamard matrices and rotation. In
addition to possessing better separation distance than most existing types of space-filling de-
signs, our newly proposed designs enjoy orthogonality and projection uniformity and are more
flexible in the numbers of runs and factors than that from most algebraic constructions. From
numerical results, such designs are excellent in Gaussian process emulation of high-dimensional
computer experiments. An R package on design construction is available online.

. Introduction

Space-filling designs that distribute points apart from each other are useful to determine input values of time-consuming computer
imulations (Santner et al., 2018). The 𝐿2 separation distance of a design 𝐷 ⊂ [0, 1]𝑝 is the minimum distance between a pair of
esign points,

𝑑(𝐷) = min
𝐱,𝐲∈𝐷

{ 𝑝
∑

𝑘=1
|𝑥𝑘 − 𝑦𝑘|

2

}1∕2

,

nd designs that achieve the maximal separation distance are called maximin distance designs. Johnson et al. (1990) showed that
aximin distance designs are desirable for computer experiments because they are asymptotically D-optimal for Gaussian process
odels with stationary and isotropic correlation functions in the sense that determinant of correlation matrices are maximized.
aaland and Qian (2011) and He and Chien (2018) showed that designs with high separation distance are appealing in reducing
umeric error, which may become the major source of emulation error for experiments with large sample size. A design with 𝑛
oints and 𝑝 factors can also be expressed as an 𝑛 × 𝑝 matrix whose 𝑖th row represents the 𝑖th design point. Using this definition,
design is called orthogonal if its column-wise correlations are all zero. As discussed in Owen (1994) and Bingham et al. (2009),

rthogonality is a desirable property for designs of computer experiment. Furthermore, low-level orthogonal designs are also useful
n constructing higher-level space-filling designs (Steinberg and Lin, 2006; Sun and Tang, 2017a).

There is a recent surge of interests on the construction of maximin distance designs or designs with high separation distance.
lgebraic constructions include Fries and Hunter (1980), Zhou and Xu (2014, 2015), Sun and Tang (2017b), Xiao and Xu (2017),
ang et al. (2018a,b), Zhou et al. (2020), Yang et al. (2021), Li et al. (2021), Wang et al. (2022), and Yuan et al. (2025), among

thers. Due to the complexity of mathematical tools, each of these methods has its own constraint on 𝑛, 𝑝, and 𝑠, the number of
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levels. On the other hand, algorithmic methods such as maximin distance Latin hypercube designs (Ba et al., 2015), maximum
projection designs (Joseph et al., 2015), interleaved lattice-based maximin distance designs (He, 2019), and orthogonal-maximin
Latin hypercube designs (Joseph and Hung, 2008) become inefficient for high-dimensional problems. Finally, existing types of
designs that possess projection uniformity, such as orthogonal array-based Latin hypercube designs (Tang, 1993), orthogonal designs
(Sun and Tang, 2017a), and strong orthogonal arrays (Sun and Tang, 2023), allow flexible choices of 𝑛 and 𝑝 but have no separation
distance property.

In this paper, we propose a method to construct high-dimensional high-separation distance designs in 2, 4, 8, and 16 levels. We
use Kronecker product of Hadamard matrices and rotation techniques in the construction. The method is applicable to 𝑛 that is a
multiple of 16 with 𝑝 such that 𝑝 < 𝑛, 𝑝 < 𝑛 − 1, 𝑝 < 𝑛 − 3, and 𝑝 < 𝑛 − 3 when 𝑠 is 2, 4, 8, and 16, respectively. Compared to
rthogonal array-based Latin hypercube designs and orthogonal designs, our proposed designs enjoy additional separation distance
roperties. Compared to most other constructions of high-separation distance designs, our method yields designs that possess better
eparation distance and additional orthogonality and projection uniformity properties. From numerical results our newly proposed
esigns outperform several existing types of space-filling designs in emulating high-dimensional computer experiments.

The rest of the paper is organized as follows. We give preliminary definitions and properties of Hadamard matrices and separation
istance efficiency in Section 2. In Section 3, we give our construction method and theoretical results. In Sections 4 and 5, we
umerically compare designs generated from several constructions using test functions and a real example, respectively. Some
inal remarks are given in Section 6. Examples to illustrate our algorithms, proofs of theorems as well as some extra theoretical
esults are provided in supplementary material. Computer code to construct our proposed designs is included in the R package
itled ‘‘HDOMDesign’’, which has been distributed to the Comprehensive R Archive Network.

. Hadamard matrices and separation distance

An 𝑚 × 𝑚 matrix 𝐻𝑚 of +1 and −1 is called a Hadamard matrix if 𝐻𝑚𝐻𝑇
𝑚 = 𝑚𝐼𝑚, where 𝐼𝑚 denotes the 𝑚 × 𝑚 identity matrix. A

adamard matrix has orthogonal rows and columns. If 𝐻𝑎 and 𝐻𝑏 are two Hadamard matrices of orders 𝑎 and 𝑏, respectively, then
𝑎 ⊗𝐻𝑏, i.e., the Kronecker product of 𝐻𝑎 and 𝐻𝑏, is a Hadamard matrix of order 𝑎𝑏. Hadamard matrices whose order is a power

of 2 can be constructed by applying

𝐻1 =
(

+1
)

, 𝐻2 =
(

+1 +1
+1 −1

)

, (1)

and 𝐻𝑚 = 𝐻2 ⊗𝐻𝑚∕2 for 𝑚 = 2𝑧 and 𝑧 ∈ N. Such constructed matrices are called Walsh Hadamard matrices. There are sometimes
multiple ways to construct a Hadamard matrix of given order. Throughout this paper, we only consider the matrix be generated
via 𝐻𝑚 = 𝐻2𝑧 ⊗𝐻𝑚∕2𝑧 with the highest possible 𝑧, where 𝐻2𝑧 is a Walsh Hadamard matrix. We also require the first column of the
matrix be consisted of ‘‘+1’’ only. Clearly, each of the other columns of them consists of half ‘‘+1’’ and half ‘‘−1’’. Such Hadamard
matrices exist for orders 1, 2, all multiples of 4 that is no greater than 664, and most higher multiples of 4. See Hedayat et al. (1999)
for further reference on Hadamard matrices.

A design is called a U-type design if its levels are equally spaced and appear equally often in each of its columns. Zhou and Xu
(2015) derived that

𝑑(𝐷)2 ≤ ⌊{𝑛∕(𝑛 − 1)}{(𝑠 + 1)(𝑠 − 1)}𝑝∕6⌋ (2)

for any U-type design with 𝑛 points, 𝑝 dimensions, and levels {1,… , 𝑠}, where ⌊𝑥⌋ denotes the highest integer not exceeding 𝑥. To
apply such a design to a specific problem, one needs to relabel the levels based on the range of input values. For example, we can
use either (𝐷−1)∕(𝑠−1) or (𝐷−1∕2)∕𝑠 if the input space is [0, 1]𝑝. While the former transformation produces designs with maximized
separation distance, designs obtained from the latter transformation is more ‘‘uniformly’’ distributed in the input space in the sense
that the 𝑠 levels locate in the center of the 𝑠 equally spaced intervals of [0, 1∕𝑠], [1∕𝑠, 2∕𝑠],… , [(𝑠− 1)∕𝑠, 1]. Provided that the goal is
to sample representative points of the input space, the latter transformation is clearly most suitable, but for the emulation purpose
it is not clear which transformation is more desirable. Nevertheless, 𝑈 -type designs with different scales can be fairly compared
using separation distance efficiency (Li et al., 2021) defined by

𝑒(𝐷) = 𝑑(𝐷)
[

{𝑛∕(𝑛 − 1)}{(𝑠 + 1)(𝑠 − 1)}𝑝∕6
]−1∕2 ∕𝑧, (3)

where 𝑛, 𝑝, 𝑠, and 𝑧 denote the number of points, the number of factors, the number of levels, and the gap distance between the
levels of the U-type design 𝐷, respectively. Furthermore, a little derivation based on (2) reveals that designs with lower 𝑠 tend to
have much higher separation distance than designs with higher 𝑠 from the (𝐷−1)∕(𝑠−1) transformation, while from the (𝐷−1∕2)∕𝑠
transformation designs with higher 𝑠 tend to have slightly higher separation distance. From using 𝑒(𝐷) in (3), U-type designs of
different 𝑠 can as well be fairly compared. Also note that in the definition of 𝑒(𝐷) we do not round {𝑛∕(𝑛 − 1)}{(𝑠 + 1)(𝑠 − 1)}𝑝∕6,
as is done in (2). This is to make the 𝑒(𝐷) function smoother. From the definition, a design whose efficiency is close to 1 is clearly
nearly optimal in separation distance. On the other hand, the efficiency of a nearly optimal design may not necessarily be close to
one since the bound in (2) may not be tight.
2
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3. Construction

In this section, we give our method to construct high-dimensional high-separation distance designs, beginning with the method to
onstruct binary designs. Our constructions make use of three types of sub-Hadamard matrices that possess high separation distance.
or a binary matrix 𝑀 , let 𝑀𝑃 denotes the sub-matrix of 𝑀 consisting of columns that are indexed by 𝑃 . When 𝐵 is a 𝑏×𝑏 Hadamard
atrix, we use 𝐵𝑝 where the index set 𝑃 is given by

𝑃 =

⎧

⎪

⎨

⎪

⎩

{𝑏 − 𝑝 + 1,… , 𝑏}, 𝑏∕2 < 𝑝 < 𝑏,
𝐿(𝑏), 𝑝 ≤ 𝑏∕2 and 𝑏 = 2𝑝−1 ≥ 16,
{𝑏∕2 − 𝑝 + 1,… , 𝑏∕2}, otherwise,

(4)

here

𝐿(𝑏) =

{

{𝑏 − 2log2(𝑏)−1,… , 𝑏 − 20, 𝑏}, log2(𝑏) is even,
{2, 𝑏 − 2log2(𝑏)−1,… , 𝑏 − 21, 𝑏}, log2(𝑏) is odd.

(5)

Let 𝜌(𝑀) denote the minimum number of positions not in common among the row pairs of 𝑀 , 𝐼() denote the identity function,
nd 𝜆(𝑏, 𝑝) be 0, 𝑏− 𝑝− 2, 𝑝− 4, and 𝑏∕2 − 𝑝 when 𝑝 = 𝑏, 𝑏∕2 < 𝑝 < 𝑏, 𝑏 = 2𝑝−1 ≥ 16, and other cases with 𝑏∕4 < 𝑝 ≤ 𝑏∕2, respectively.
roposition 1 below summarizes the separation distance property of sub-Hadamard matrices introduced in (4).

roposition 1. Suppose 𝐵𝑃 is a 𝑝 × 𝑏 sub-Hadamard matrix with either 𝑏∕4 < 𝑝 ≤ 𝑏 or 𝑏 = 2𝑝−1 ≥ 16 and 𝑃 is given by (4). When
𝑏 = 2𝑝−1 ≥ 16, further suppose that 𝐵 is the Walsh Hadamard matrix of order 𝑏. When 𝑏∕4 < 𝑝 ≤ 𝑏∕2, further suppose that 𝐵 can be
expressed as the Kronecker product of 𝐻2 in (1) and a Hadamard matrix of order 𝑏∕2.

Then columns of 𝐵𝑃 are mutually orthogonal, 𝜌(𝐵𝑃 ) ≥ 𝑝∕2−𝜆(𝑏, 𝑝)∕2, and 𝑒(𝐵𝑃 )2 ≥ {1−𝜆(𝑏, 𝑝)∕𝑝}(1−1∕𝑛). Furthermore, each column
of 𝐵𝑃 consists of half +1 and half −1 unless 𝑝 = 𝑛.

Indicated from Proposition 1, whenever 𝜆(𝑏, 𝑝)∕𝑝 is close to zero, 𝐵𝑃 is nearly optimal in separation distance. That is to say, for
𝑝∕𝑏 being either nearly 1 or nearly 1∕2, we can generate nearly optimal designs and the choices of 𝑏 or 𝑝 are flexible. In particular,
from some derivations based on (2), 𝐵𝑃 is optimal when 𝑏− 3 ≤ 𝑝 ≤ 𝑏 or 𝑏∕2 − 1 ≤ 𝑝 ≤ 𝑏∕2. Although not guaranteed to be optimal,
designs with 𝑏 = 2𝑝−1 are also appealing as we are not aware of better designs with such low 𝑝∕𝑏. On the other hand, for many
other 𝑝∕𝑛 the generated designs are not excellent.

To construct nearly optimal designs with more flexible 𝑝∕𝑛, we consider Kronecker product of sub-Hadamard matrices. Theorem 1
below gives the basic properties of product sub-Hadamard matrices.

Theorem 1. Suppose 𝐴 and 𝐵 are two Hadamard matrices of orders 𝑎 and 𝑏, respectively, 𝐻 = 𝐴⊗𝐵, and 𝑄 = 𝑃 ∪{𝑥+ 𝑦𝑏 ∶ 𝑥 ∈ 𝑃 , 1 ≤
𝑦 ≤ 𝑎 − 1}. Then

𝜌(𝐻𝑄) ≥ 𝑞∕2 − max{(𝑎 − 1)𝜆(𝑏, 𝑝̃)∕2 + 𝜆(𝑏, 𝑝̄)∕2, 𝑝̄∕2 − 𝑝̃∕2, 𝑝̃∕2 + 𝜆(𝑏, 𝑝̄)∕2}.

From Theorem 1, 𝐻𝑄 has favorable separation distance whenever both 𝐵𝑃 and 𝐵𝑃 are nearly optimal in separation distance. An
improved but much more complicated bound on separation distance of 𝐻𝑄 is provided in supplementary material. For a set 𝑍, let
|𝑍| denote its cardinality. Theorem 2 below shows two further ways to make the 𝑝 flexible:

Theorem 2. Suppose 𝑈 ⊂ {2,… , 𝑏} ⧵𝑃 and 𝑉 ⊂ 𝑃 . Then 𝑒(𝐻𝑄∪𝑈 )2 ≥ 𝑒(𝐻𝑄)2|𝑄|∕(|𝑄|+ |𝑈 |) and 𝑒(𝐻𝑄⧵𝑉 )2 ≥ 𝑒(𝐻𝑄)2|𝑄|∕(|𝑄|− |𝑉 |) −
(1 − 1∕𝑛)|𝑉 |∕(|𝑄| − |𝑉 |).

From Theorem 2, provided that |𝑈 | and |𝑉 | are small compared to |𝑄|, 𝐻𝑄∪𝑈 and 𝐻𝑄⧵𝑉 are also appealing. This allows us to
dd or remove a few columns from 𝐻𝑄. Employing the above techniques, we propose to construct 2-level designs using Algorithm
. An example to illustrate Algorithm 1 is provided in the supplementary material.

In Algorithm 1, we try different combinations of 𝑎, 𝑏, 𝑝̃, and 𝑝̄, hoping to find one choice that yield a high-separation distance
esign. From Algorithm 1, 𝑎 much divide 𝑛, 𝑏 is determined by (𝑛, 𝑎), there are at most (𝑏 + 1)∕(𝑎 − 1) + 1 choices of 𝑝̃, and two
hoices of 𝑝̄. Consequently, Algorithm 1 does not need many iterations and thus is fast in computation.

Because the order of most Hadamard matrices is a multiple of four, most choices of 𝑎 and 𝑏 are multiples of four, requiring 𝑛 to
e a multiple of 16. Besides, to allow orthogonal columns, 𝑝 has to be less than 𝑛. These are the major constraints on (𝑛, 𝑝), which
s much looser than most algebraic constructions of high-separation distance designs.

Next, we propose the method to construct four-level high-separation distance designs from rotating binary designs. Steinberg
nd Lin (2006) showed that four-level U-type designs can be obtained by rotating an orthogonal binary design in groups of two
sing the rotation matrix

𝑅2 =
(

2 1
−1 2

)

∕51∕2.

set G is called a 𝑘-grouping of 𝐽 ⊂ N if all elements of G are 𝑘-vectors, the entries in these vectors are mutually different, and the
ntries combined cover 𝐽 . Let 𝑅2,G denote the 𝑛 × 𝑛 block diagonal matrix such that for each 𝐺 ∈ G the block indexed by 𝐺 is 𝑅2
nd all other diagonal entries are one. A U-type design with even number of equally spaced levels 𝑧−(𝑠−1)𝑙, 𝑧−(𝑠−3)𝑙,… , 𝑧+(𝑠−1)𝑙
3
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Algorithm 1: Procedure to generate two-level designs

1 initialize 𝐵𝑃 from Proposition 1, 𝐷OPT = (1 − 𝐵𝑃 )∕2, and 𝑑MAX = 𝑑(𝐷OPT);
2 for (𝑎, 𝑏) such that Hadamard matrices of orders 𝑎 ≥ 2 and 𝑏 ≥ 2 exist do
3 obtain Hadamard matrices 𝐴 and 𝐵 and compute 𝐻 = 𝐴⊗ 𝐵;
4 for 𝑝̃ such that ⌊(𝑝 − 𝑏 − 1)∕(𝑎 − 1)⌋ ≤ 𝑝̃ ≤ ⌈𝑝∕(𝑎 − 1)⌉ do
5 if 𝜆(𝑏, 𝑝̃) > 2 and 𝑏 ≠ 2𝑝̃−1, continue to the next 𝑝̃;
6 generate the indices set 𝑃 for 𝑝̃ × 𝑏 matrix given by (4);
7 for 𝑝̄ being either (the lowest integer no less than 𝑝 − (𝑎 − 1)𝑝̃ such that 𝜆(𝑏, 𝑝̄) ≤ 2 or 𝑏 = 2𝑝̄−1) or (the greatest integer no

more than 𝑝 − (𝑎 − 1)𝑝̃ such that 𝜆(𝑏, 𝑝̄) ≤ 2, or 𝑏 = 2𝑝̄−1, or 𝑝̄ = 0) do
8 if 𝑝̄ = 0, let 𝑃 = ∅; otherwise generate 𝑃 from (4);
9 let 𝑄 = 𝑃 ∪ {𝑥 + 𝑦𝑏 ∶ 𝑥 ∈ 𝑃 , 1 ≤ 𝑦 ≤ 𝑎 − 1} and 𝑞 = |𝑄|;
10 if 𝑞 = 𝑝, let 𝑃 = 𝑄;
11 if 𝑞 > 𝑝, select a 𝑉 such that 𝑉 ⊂ 𝑄 and 𝑣 = 𝑞 − 𝑝 and let 𝑃 = 𝑄 ⧵ 𝑉 ;
12 if 𝑞 < 𝑝, select a 𝑈 such that 𝑈 ⊂ {2,… , 𝑛} ⧵𝑄 and 𝑢 = 𝑝 − 𝑞 and let 𝑃 = 𝑄 ∪ 𝑈 ;
13 let 𝐷 = (1 −𝐻𝑃 )∕2 and compute 𝑑(𝐷);
14 if 𝑑(𝐷) > 𝑑MAX, update 𝑑MAX = 𝑑(𝐷) and 𝐷OPT = 𝐷;
15 end
16 end
17 end
18 return 𝐷OPT.

is said to possess 2 × 2 projection uniformity if all of its column pairs have equal number of rows in the four 2 × 2 bins of
𝑧−(𝑠−1)𝑙, 𝑧−𝑙]×[𝑧−(𝑠−1)𝑙, 𝑧−𝑙], [𝑧−(𝑠−1)𝑙, 𝑧−𝑙]×[𝑧+𝑙, 𝑧+(𝑠−1)𝑙], [𝑧+𝑙, 𝑧+(𝑠−1)𝑙]×[𝑧−(𝑠−1)𝑙, 𝑧−𝑙], and [𝑧+𝑙, 𝑧+(𝑠−1)𝑙]×[𝑧+𝑙, 𝑧+(𝑠−1)𝑙].
heorem 3 below gives the construction method.

heorem 3. Suppose 1 ≤ 𝑝 ≤ 𝑛 − 2, 𝐻 = 𝐴⊗ 𝐵 is an 𝑛 × 𝑛 Hadamard matrix, 𝑄 ⊂ {2,… , 𝑛}, |𝑄| = 𝑞, and ⌈𝑞∕2⌉ = ⌈𝑝∕2⌉. Then there
xists 𝑈 ⊂ {2,… , 𝑛} ⧵𝑄, 𝑉 ⊂ 𝑄 ∪𝑈 , and G such that |𝑈 | ≤ 1, |𝑉 | ≤ 1, G is a 2-grouping of 𝑄 ∪𝑈 , 𝐷 = (𝐻𝑅2,G )𝑃 is an 𝑛 × 𝑝 four-level
orthogonal U-type design that possesses 2 × 2 projection uniformity, and

𝑒(𝐷)2 ≥ 𝑒(𝐻𝑄)2𝑞∕𝑝 − 2(1 − 1∕𝑛)𝐼(𝑞 ≥ 𝑝){𝑞 − 𝑝 − (4∕5)𝐼(𝑝 is odd)}∕𝑝. (6)

Remark that 2-groupings must have even number of elements. Consequently, after obtaining an 𝐻𝑄 that process high separation
distance where 𝑞 is odd, we have to rotate 𝐻𝑄∪𝑈 instead of rotate 𝐻𝑄. When 𝑈 = 𝑉 = ∅, we have 𝑞 = 𝑝 and 𝑒(𝐷)2 = 𝑒(𝐻𝑄)2,
i.e., there is no loss on separation distance efficiency during the rotation step. In other cases, the loss is small for big 𝑝. That is to
say, 𝐷 has appealing separation distance if and only if 𝐻𝑃 has appealing separation distance. Because the 𝑛 and 𝑝 are relatively
flexible for binary designs, they are also flexible for 4-level designs. Nevertheless, using the above approach it is not possible to
construct a design with 𝑝 = 𝑛 − 1 columns.

Similar to Algorithm 1, we propose to construct four-level designs for given 𝑛 and 𝑝 < 𝑛−1 using Algorithm 2, which is illustrated
y an example provided in the supplementary material.

Finally, we propose our method to construct 8-level and 16-level designs using the rotation matrices

𝑅3 =

⎛

⎜

⎜

⎜

⎜

⎝

4 −2 −1 0
2 4 0 1
1 0 4 −2
0 −1 2 4

⎞

⎟

⎟

⎟

⎟

⎠

∕
√

21 and 𝑅4 =

⎛

⎜

⎜

⎜

⎜

⎝

8 −4 −2 1
4 8 −1 −2
2 −1 8 −4
1 2 4 8

⎞

⎟

⎟

⎟

⎟

⎠

∕
√

85.

A binary matrix is called 𝑘-orthogonal if from all of its 𝑘-column submatrices the 2𝑘 level combinations occur equally often from
the rows. A binary design 𝐻𝑄 that is a sub-design of 𝐻 is called 𝑗-orthogonal with 𝑘-grouping G if G is a 𝑘-grouping of 𝑄 and 𝐻𝐺
is 𝑗-orthogonal for any 𝐺 ∈ G . For a 4-grouping G and 𝑗 ∈ {3, 4}, let 𝑅𝑗,G denote the 𝑛× 𝑛 block diagonal matrix such that for each
𝐺 ∈ G the block indexed by 𝐺 is 𝑅𝑗 and all other diagonal entries are one. Sun and Tang (2017a) showed that if a binary balanced
design is 𝑗-orthogonal with a 4-grouping G , from rotating it by groups using 𝑅𝑗,G we can obtain a 2𝑗 -level orthogonal U-type design
with 2 × 2 projection uniformity. Zhou et al. (2020) generated high-separation distance designs by rotating full factorial designs in
groups. However, their construction requires 𝑛 to be a power of 2 and 𝑝 to be certain multiples of 𝑛∕4. We summarize their results
that are relevant to our construction in Lemma 1 below.

Lemma 1. Suppose 𝑘 ∈ {3, 4}, 𝐻 is a binary orthogonal U-type design, G is a 4-grouping of 𝑄, 𝐻𝑄 is 𝑘-orthogonal with G , 𝑊 = 𝐻𝑅𝑘,G ,
and 𝐷 = 𝑊𝑄. Then 𝐷 is a 2𝑘-level orthogonal U-type design with 2 × 2 projection uniformity, 𝑑(𝐷) = 𝑑(𝐻𝑄), and 𝑒(𝐷) = 𝑒(𝐻𝑄).

From Lemma 1, 𝐷 is optimal and nearly optimal in separation distance if and only if 𝐻𝑄 is. we can thus use 𝐻𝑄 to construct 8-
level and 16-level designs provided that they are 3-orthogonal or 4-orthogonal, respectively, with a 4-grouping. To uncover whether
they can be partitioned into orthogonal groups, we give four types of orthogonal 4-groups in Proposition 2 below.
4



Journal of Statistical Planning and Inference 232 (2024) 106150X. He and F. Sun

𝑦

𝑥

t
d

T
𝑃
𝑝
o

a

𝑝

l
𝑒
t
e

t
d

T
𝑃
𝑝

a

𝑝

𝑝
t
r

Algorithm 2: Procedure to generate four-level designs

1 Initialize 𝐻𝑄 be obtained from Proposition 1, choose 𝑈 , 𝑉 , and G so that (6) is valid, compute 𝑃 = (𝑄 ∪ 𝑈 ) ⧵ 𝑉 , 𝑅,
𝑊 = 𝐻𝑅, 𝐷 = 𝑊𝑃 , and 𝑑(𝐷);

2 for (𝑎, 𝑏) such that Hadamard matrices of orders 𝑎 ≥ 2 and 𝑏 ≥ 2 exist do
3 obtain Hadamard matrices 𝐴 and 𝐵 and compute 𝐻 = 𝐴⊗ 𝐵;
4 for 𝑝̃ such that ⌊(𝑝 − 𝑏 − 1)∕(𝑎 − 1)⌋ ≤ 𝑝̃ ≤ ⌈𝑝∕(𝑎 − 1)⌉ do
5 if 𝜆(𝑏, 𝑝̃) > 2 and 𝑏 ≠ 2𝑝̃−1, continue to the next 𝑝̃;
6 generate 𝑃 from (4);
7 for 𝑝̄ being either (the lowest integer no less than 𝑝 − (𝑎 − 1)𝑝̃ such that 𝜆(𝑏, 𝑝̄) ≤ 2 or 𝑏 = 2𝑝̄−1) or (the greatest integer no

more than 𝑝 − (𝑎 − 1)𝑝̃ such that 𝜆(𝑏, 𝑝̄) ≤ 2, or 𝑏 = 2𝑝̄−1, or 𝑝̄ = 0) do
8 if 𝑝̄ = 0, let 𝑃 = ∅; otherwise generate 𝑃 from (4);
9 let 𝑄 = 𝑃 ∪ {𝑥 + 𝑦𝑏 ∶ 𝑥 ∈ 𝑃 , 1 ≤ 𝑦 ≤ 𝑎 − 1} and 𝑞 = |𝑄|;
10 choose 𝑈 , 𝑉 , and G so that (6) is valid, compute 𝑃 = (𝑄 ∪ 𝑈 ) ⧵ 𝑉 , 𝑅, 𝑊 = 𝐻𝑅, 𝐷 = 𝑊𝑃 , and 𝑑(𝐷);
11 if 𝑑(𝐷) > 𝑑MAX, update 𝑑MAX = 𝑑(𝐷) and 𝐷OPT = 𝐷;
12 end
13 end
14 end
15 return 𝐷OPT.

Proposition 2. Suppose 𝐻 = 𝐴⊗ 𝐵, 𝐴 and 𝐵 are two Hadamard matrices of orders 𝑎 and 𝑏, respectively, 𝐺 = {(𝑖 − 1)𝑏 + 𝑥, (𝑗 − 1)𝑏 +
, (𝑘−1)𝑏+𝑧, (𝑙−1)𝑏+𝑤} ⊂ {2,… , 𝑎𝑏}, 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1,… , 𝑎}, and 𝑥, 𝑦, 𝑧, 𝑤 ∈ {1,… , 𝑏}. Then 𝐻𝐺 is 3-orthogonal and 4-orthogonal provided
that (a) 1 ≠ 𝑖 = 𝑗 = 𝑘 ≠ 𝑙 ≠ 1; or (b) 1 ≠ 𝑖 = 𝑗 ≠ 𝑘 = 𝑙 ≠ 1, 𝑥 = 𝑧, and 𝑦 ≠ 𝑤; or (c) 𝑖 = 𝑗, the 𝑖, 𝑘, 𝑙, 1 are mutually different, 𝑧 = 𝑤,
≠ 1, and 𝑦 ≠ 1. Besides, 𝐻𝐺 is 3-orthogonal provided that 𝑖 = 𝑗, 𝑘 = 𝑙, 𝑥 = 𝑧, and 𝑦 = 𝑤.

Exploiting Propositions 2, we show in Theorem 4 below that most 𝐻𝑄 obtained from Theorem 1 with 𝑎 ≥ 2 can be supplemented
o a binary orthogonal U-type design that is 3-orthogonal with a 4-grouping and we can thus construct 8-level high-separation
istance designs from rotating them.

heorem 4. Suppose 𝐴 and 𝐵 are two Hadamard matrices of orders 𝑎 ≥ 2 and 𝑏 ≥ 4, respectively, 𝐻 = 𝐴⊗𝐵, 𝑝 ≤ 𝑎𝑏−4, 𝑃 ⊂ {1,… , 𝑏},
̄ ⊂ {2,… , 𝑏}, 1 ∉ 𝑃 as long as 𝑝̃ < 𝑏, 𝑄 = 𝑃 ∪ {𝑥 + 𝑦𝑏 ∶ 𝑥 ∈ 𝑃 , 1 ≤ 𝑦 ≤ 𝑎 − 1}, and |𝑄| = 𝑞. When 𝑎 ≥ 4, further suppose 𝑝̃ ≥ 2,
̄ ≤ (𝑎 − 3)𝑝̃ + 2, 𝑞 ≤ 𝑎𝑏 − 4, and 𝑝̂ = max(4⌈𝑝∕4⌉ − 𝑞, 4⌈𝑞∕4⌉ − 𝑞) ≤ 𝑏 − 1. When 𝑎 = 2, further suppose 𝑝̃ ≤ 𝑏 − 2, 𝑝̄ ≤ 𝑏 − 2, either 𝑃 ⊂ 𝑃
r 𝑃 ⊂ 𝑃 , and 𝑝̂ = 4max(⌈𝑝∕4⌉, ⌈𝑝̃∕2⌉, ⌈𝑝̄∕2⌉) − 𝑞.
Then there exist sets 𝑈, 𝑉 ⊂ {2,… , 𝑎𝑏} and a 4-grouping G of 𝑄 ∪ 𝑈 such that 𝑈 ∩ 𝑄 = ∅, |𝑈 | = 𝑝̂, 𝑉 ⊂ (𝑈 ∪ 𝑄), |𝑉 | = 𝑞 + |𝑉 | − 𝑝,

nd 𝐻𝑈∪𝑄 is 3-orthogonal with G .
Let 𝑃 = (𝑈 ∪ 𝑄) ⧵ 𝑉 , 𝑊 = 𝐻𝑅3,G , and 𝐷 = 𝑊𝑃 . Then 𝐷 is an 8-level orthogonal U-type design with 𝑛 = 𝑎𝑏 points and

= |𝑃 | = (𝑎 − 1)𝑝̃ + 𝑝̄ + 𝑢 − 𝑣 factors, 𝐷 possesses 2 × 2 projection uniformity, and

𝑒(𝐷)2 ≥ 𝑒(𝐻𝑄)2𝑞∕𝑝 − (1 − 1∕𝑛)(14∕3)(𝑣∕𝑝).

From Theorem 4, the difference on separation distance efficiency between binary designs 𝐻𝑄 and 8-level designs 𝐷 is small for
arge 𝑝. Further suppose that either (a) 𝑎 ≥ 4 and 𝑝̃ ≤ 𝑏 − 3; or (b) 𝑎 = 2 and max(⌈𝑝̃∕2⌉, ⌈𝑝̄∕2⌉) − min(⌊𝑝̃∕2⌋, ⌊𝑝̄∕2⌋) ≤ 2, the gap in
(𝐷)2 and 𝑒(𝐻𝑄)2𝑞∕𝑝 can be even smaller than (1 − 1∕𝑛)(14∕3)(𝑣∕𝑝). However, because the formula is quite complicated, we provide
he results in the supplementary material. In light to Theorem 4, we recommend to generate 8-level designs using Algorithm 3. An
xample to illustrate Algorithm 3 is provided in the supplementary material.

Similar to Theorem 4, we show in Theorem 5 below that most 𝐻𝑄 obtained from Theorem 1 with 𝑎 ≥ 4 can be supplemented
o a binary orthogonal U-type design that is 4-orthogonal with a 4-grouping and we can thus construct 16-level high-separation
istance designs from rotating them.

heorem 5. Suppose 𝐴 and 𝐵 are two Hadamard matrices of orders 𝑎 ≥ 4 and 𝑏 ≥ 4, respectively, 𝐻 = 𝐴⊗𝐵, 𝑝 ≤ 𝑎𝑏−4, 𝑃 ⊂ {1,… , 𝑏},
̄ ⊂ {2,… , 𝑏}, 𝑝̃ ≥ 2, 1 ∉ 𝑃 as long as 𝑝̃ < 𝑏, 𝑝̄ ≤ (𝑎 − 3)𝑝̃ + 2, 𝑄 = 𝑃 ∪ {𝑥 + 𝑦𝑏 ∶ 𝑥 ∈ 𝑃 , 1 ≤ 𝑦 ≤ 𝑎 − 1}, 𝑞 = |𝑄| ≤ 𝑎𝑏 − 4, and
̂ = max(4⌈𝑝∕4⌉ − 𝑞, 4⌈𝑞∕4⌉ − 𝑞) ≤ 𝑏 − 1.
Then there exist sets 𝑈, 𝑉 ⊂ {2,… , 𝑎𝑏} and a 4-grouping G of 𝑈 ∪ 𝑄 such that 𝑈 ∩ 𝑄 = ∅, |𝑈 | = 𝑝̂, 𝑉 ⊂ (𝑈 ∪ 𝑄), |𝑉 | = 𝑞 + |𝑈 | − 𝑝,

nd 𝐻𝑈∪𝑄 is 4-orthogonal with the grouping G .
Let 𝑃 = (𝑈 ∪ 𝑄) ⧵ 𝑉 , 𝑊 = 𝐻𝑅4,G , and 𝐷 = 𝑊𝑃 . Then 𝐷 is a 16-level orthogonal U-type design with 𝑛 = 𝑎𝑏 points and

= |𝑃 | = (𝑎 − 1)𝑝̃ + 𝑝̄ + 𝑢 − 𝑣 factors, 𝐷 possesses 2 × 2 projection uniformity, and

𝑒(𝐷)2 ≥ 𝑒(𝐻𝑄)2𝑞∕𝑝 − (1 − 1∕𝑛)(90∕17)(𝑣∕𝑝).

From Theorem 5, we can construct nearly optimal 16-level designs from rotating nearly optimal binary designs. Provided that
̃ ≤ 𝑏 − 3, there exist 𝑈 , 𝑉 , and G such that the difference between 𝑒(𝐷)2 and 𝑒(𝐻𝑄)2𝑞∕𝑝 is even smaller. This result is provided in
he supplementary material. The algorithm to construct 16-level designs is the same to Algorithm 3 excepts that Steps 14–17 are
5

emoved and the (𝑈, 𝑉 ,G ) that fulfills Theorem 4 in Steps 7 and 10 are replaced by (𝑈, 𝑉 ,G ) that fulfills Theorem 5, respectively.
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Algorithm 3: Procedure to generate eight-level designs

1 initialize 𝑑MAX = −1;
2 for (𝑎, 𝑏) such that Hadamard matrices of orders 𝑎 ≥ 4 and 𝑏 ≥ 4 exist do
3 obtain Hadamard matrices 𝐴 and 𝐵 and compute 𝐻 = 𝐴⊗ 𝐵;
4 for 𝑝̃ with 𝑝̃ ≥ 2 and ⌊(𝑝 − 𝑏 − 1)∕(𝑎 − 1)⌋ ≤ 𝑝̃ ≤ ⌈𝑝∕(𝑎 − 1)⌉ do
5 if 𝑏 is a power of 2 and log2(𝑏) + 1 ≤ 𝑝̃ < 𝑏∕4 + 2, let 𝑃 be the union of 𝐿(𝑏) in (5) and the 𝑝̃− |𝐿(𝑏)| largest elements of {1,… , 𝑏} ⧵𝐿(𝑏), otherwise let

𝑃 = {𝑏 − 𝑝̃ + 1,… , 𝑏};
6 let 𝑝̄ be the integer closest to 𝑝 − (𝑎 − 1)𝑝̃ provided that 𝑝̄ ≥ 0, 𝑝̄ ≤ 𝑏 − 1, and 𝑝̄ ≤ (𝑎 − 3)𝑝̃ + 2 and let 𝑃 = {𝑏 − 𝑝̄ + 1,… , 𝑏};
7 let 𝑄 = 𝑃 ∪ {𝑥 + 𝑦𝑏 ∶ 𝑥 ∈ 𝑃 , 1 ≤ 𝑦 ≤ 𝑎 − 1}, 𝑝̂ = max(4⌈𝑝∕4⌉ − 𝑞, 4⌈𝑞∕4⌉ − 𝑞), find (𝑈, 𝑉 ,G ) such that the conditions of Theorem 4 are fulfilled; compute

𝑃 = (𝑈 ∪𝑄) ⧵ 𝑉 , 𝑅, 𝑊 = 𝐻𝑅, 𝐷 = 𝑊𝑃 , and 𝑑(𝐷); if 𝑑(𝐷) > 𝑑MAX, update 𝑑MAX = 𝑑(𝐷) and 𝐷OPT = 𝐷;
8 if 𝑏 is a power of 2 and log2(𝑏) + 1 ≤ 𝑝̄ < 𝑏∕4 + 2 then
9 let 𝑃 be the union of 𝐿(𝑏) in (5) and the 𝑝̄ − |𝐿(𝑏)| largest elements of {1,… , 𝑏} ⧵ 𝐿(𝑏);
10 let 𝑄 = 𝑃 ∪ {𝑥 + 𝑦𝑏 ∶ 𝑥 ∈ 𝑃 , 1 ≤ 𝑦 ≤ 𝑎 − 1}, 𝑝̂ = max(4⌈𝑝∕4⌉ − 𝑞, 4⌈𝑞∕4⌉ − 𝑞), find (𝑈, 𝑉 ,G ) such that conditions of Theorem 4 are fulfilled; compute

𝑃 = (𝑈 ∪𝑄) ⧵ 𝑉 , 𝑅, 𝑊 = 𝐻𝑅, 𝐷 = 𝑊𝑃 , and 𝑑(𝐷); if 𝑑(𝐷) > 𝑑MAX, update 𝑑MAX = 𝑑(𝐷) and 𝐷OPT = 𝐷;
11 end
12 end
13 end
14 let 𝑎 = 2, 𝑏 = 𝑛∕2, 𝑝̃ = 𝑝̄ = 2⌈𝑝∕4⌉, 𝑃 = 𝑃 = {𝑏 − 𝑝̃ + 1,… , 𝑏}, 𝑄 = 𝑃 ∪ {𝑥 + 𝑦𝑏 ∶ 𝑥 ∈ 𝑃 , 1 ≤ 𝑦 ≤ 𝑎 − 1}, 𝑞 = |𝑄|, and 𝑝̂ = max(4⌈𝑝∕4⌉ − 𝑞, 4⌈𝑞∕4⌉ − 𝑞); obtain 𝐴 and 𝐵,

Hadamard matrices of orders 𝑎 and 𝑏, respectively; compute 𝐻 = 𝐴⊗ 𝐵; find (𝑈, 𝑉 ,G ) such that the conditions of Theorem 4 are fulfilled; compute
𝑃 = (𝑈 ∪𝑄) ⧵ 𝑉 , 𝑅, 𝑊 = 𝐻𝑅, 𝐷 = 𝑊𝑃 , and 𝑑(𝐷); if 𝑑(𝐷) > 𝑑MAX, update 𝑑MAX = 𝑑(𝐷) and 𝐷OPT = 𝐷;

15 if 𝑏 is a power of 2 and log2(𝑏) + 1 ≤ 𝑝̃ < 𝑏∕4 + 2 then
16 let 𝑃 = 𝑃 being the union of 𝐿(𝑏) in (5) and the 𝑝̃ − |𝐿(𝑏)| largest elements of {1,… , 𝑏} ⧵ 𝐿(𝑏), 𝑄 = 𝑃 ∪ {𝑥 + 𝑦𝑏 ∶ 𝑥 ∈ 𝑃 , 1 ≤ 𝑦 ≤ 𝑎 − 1},

𝑝̂ = max(4⌈𝑝∕4⌉ − 𝑞, 4⌈𝑞∕4⌉ − 𝑞), find (𝑈, 𝑉 ,G ) such that conditions of Theorem 4 are fulfilled; compute 𝑃 = (𝑈 ∪𝑄) ⧵ 𝑉 , 𝑅, 𝑊 = 𝐻𝑅, 𝐷 = 𝑊𝑃 , and 𝑑(𝐷);
if 𝑑(𝐷) > 𝑑MAX, update 𝑑MAX = 𝑑(𝐷) and 𝐷OPT = 𝐷;

17 end
18 return 𝐷OPT.

4. Numerical comparison

To corroborate the usefulness of our proposed designs, we compare them to four types of space-filling designs below:

DD Our newly proposed high-dimensional high-separation distance designs.

mLLT Maximin distance designs proposed by Li et al. (2021).

mLH Maximin distance Latin hypercube designs generated from the R package ‘‘SLHD’’ (Ba, 2015).

axPro Maximum projection Latin hypercube designs generated from the R package ‘‘MaxPro’’ (Ba and Joseph, 2015)

A Two-level orthogonal arrays. When 𝑛 is a power of two, we use minimum aberration fractional factorial arrays generated from
the R package ‘‘FrF2’’ (Groemping, 2022); otherwise we use randomly selected columns of two-level saturated orthogonal
arrays that are generated from Hadamard matrices.

Firstly, Figs. 1 and 2 present separation distance efficiency in (3) of designs with roughly 80 and 256 points, respectively.
bserved from the figures, HDD is the best method for 𝑝 ≥ 30 and 𝑝 ≥ 120 when 𝑛 = 80 and 𝑛 = 256, respectively. Under these

cases, HDD designs possess 85% or higher efficiency. In particular, the 𝑛 = 80 two-level HDD designs with 𝑝 being 39, 40, 41, 57,
59, 60, 61, 71, 72, 73, 75, 76, 77, 78, 79, and the 𝑛 = 256 two-level HDD designs with 𝑝 being 127, 128, 129, 189, 191, 192, 193,
17, 221, 223, 224, 225, 233, 237, 239, 240, 241, 245, 247, 248, 249, 251, 252, 253, 254, 255 are optimal in separation distance.
lso taking into account of the advantages on orthogonality, 2 × 2 projection uniformity, flexibility on 𝑛 and 𝑝, and applicability

o very high 𝑛, HDD is arguable the best method for constructing high-dimensional designs. However, HDD designs possess lower
fficiency and are inferior to some other designs for lower 𝑝, indicating that HDD is less desirable for when 𝑝 is low. The fact that
o design has near-to-one efficiency for small 𝑝 cues that the bound in (2) may not be tight when 𝑝∕𝑛 is small. Although HDD in
= 2 is superior than HDD with higher 𝑠 in separation distance efficiency, the difference is negligible.

Not producing any design in 𝑛 = 80, we use MmLLT designs of 81 points in the comparison. The performance of MmLLT designs
s varying, this is, while some of them are very good, more than half of them are poor. We also find that some of the MmLLT
esigns have fully confounded column pairs, which are not desirable. While being excellent for cases with low 𝑝, MmLH becomes
ess favorable as 𝑝 grows, both in the separation distance and the time consumption in generating designs. Owing to the slow
omputation, MmLH is not suitable to problems with huge 𝑛 or huge 𝑝. MaxPro designs are poor in the efficiency because they
ptimizes separation distances of projections. OA designs that are generated from randomly selected columns of Hadamard matrices
re poor. Finally, two-level minimum aberration fractional factorial arrays are in general excellent in separation distance efficiency.
owever, minimum aberration fractional factorial arrays can only be constructed when 𝑛 is a power of 𝑠.

Since HDD is excellent in separation distance, we are curious to see if HDD is appealing in emulating high-dimensional computer
xperiments. In the rest of this section, we compare designs on interpolating seven batches of randomly generated test functions.
e generate the first batch of test functions via

𝑓 (𝐱) =
𝑝
∑

𝛽𝑘𝑥𝑘 +𝑍(𝐱), (7)
6

𝑘=1
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Fig. 1. Separation distance efficiencies for designs with roughly 80 points.

Fig. 2. Separation distance efficiencies for designs with 256 points.

where 𝑓 (𝐱) gives the output value, the 𝛽𝑘 are independently sampled from the uniform distribution on [−𝛾, 𝛾], 𝛾 is chosen to be 0 or
, and 𝑍(𝐱) is the realization of a mean zero Gaussian process whose correlation function is Matérn-type with smoothness parameter
eing 5∕2 and scale parameter being 5. That is to say, when 𝛾 = 0, 𝑓 (𝐱) is a randomly generated Gaussian process; when 𝛾 = 5,
trong linear trends are added to the Gaussian process. We generate the second batch of test functions in a similar way excepts that
he Matérn-type correlation function is replaced by the Gaussian correlation function.

The third batch of test functions is given by

𝑓 (𝐱) = exp

{

−
𝑝
∑

𝑖=1
(𝑥𝑖 − 𝑎𝑖)2 −

𝑝
∑

𝑖=1
(𝑥𝑖 − 𝑏𝑖)2

}

, (8)

here the 𝑎𝑖 and 𝑏𝑖 follow uniform distribution on [0, 1]. This function is modified from the function

𝑓 (𝐱) = exp

{

−50
𝑝
∑

𝑖=1
(𝑥𝑖 − 1∕3)2 − 50

𝑝
∑

𝑖=1
(𝑥𝑖 − 2∕3)2

}

(100∕𝜋)𝑝∕2∕2,

hich was used in An and Owen (2001) as a test function that cannot be approximated by a low order polynomial to compare
mulation methods. Here we let the 𝑎𝑖 and 𝑏𝑖 to vary so that we can generate 100 distinct functions. We drop the parameter 50

because it does not fit the 𝑝 = 40 or 𝑝 = 60 scenarios. The fourth batch of test functions is the so-called G function,
7
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Table 1
Averaged integrated prediction error from the SK model in (11) and the UK model in (12) when data are generated from the
random Gaussian processes by (7) with Matérn correlation function.

n 𝛾 Model OA MmLLT MaxPro MmLH HDD2 HDD4 HDD8 HDD16

80 0 SK 0.499 0.481 0.489 0.492 0.410 0.402 0.464 0.445
80 0 UK 0.509 2.4 × 105 0.512 0.496 0.396 0.378 0.408 0.382
80 5 SK 0.497 4.015 0.505 0.469 0.405 0.389 0.403 0.400
80 5 UK 0.509 3.4 × 105 0.511 0.494 0.398 0.380 0.398 0.385

256 0 SK 0.330 0.365 0.369 0.369 0.360 0.382 0.452 0.423
256 0 UK 0.327 0.392 0.400 0.394 0.359 0.378 0.423 0.427
256 5 SK 0.321 0.356 0.372 0.360 0.425 0.370 0.435 0.423
256 5 UK 0.330 0.365 0.369 0.369 0.360 0.382 0.452 0.423

Table 2
Averaged integrated prediction error from the SK model in (11) and the UK model in (12) when data are generated from the
random Gaussian processes by (7) with Gaussian correlation function.

n 𝛾 Model OA MmLLT MaxPro MmLH HDD2 HDD4 HDD8 HDD16

80 0 SK 0.356 0.409 0.387 0.358 0.290 0.286 0.340 0.327
80 0 UK 0.365 6.7 × 104 0.385 0.375 0.292 0.282 0.290 0.290
80 5 SK 0.349 4.014 0.372 0.351 0.288 0.283 0.296 0.292
80 5 UK 0.365 2.3 × 105 0.381 0.372 0.276 0.285 0.297 0.293

256 0 SK 0.221 0.254 0.254 0.259 0.254 0.264 0.307 0.287
256 0 UK 0.220 0.260 0.278 0.268 0.255 0.256 0.289 0.292
256 5 SK 0.221 0.255 0.254 0.258 0.254 0.264 0.307 0.287
256 5 UK 0.217 0.235 0.257 0.255 0.254 0.258 0.287 0.275

𝑓 (𝐱) =
𝑝
∏

𝑖=1

{

2(4|𝑥𝑖 − 𝑎𝑖| + 𝑖∕2 − 1)∕𝑖
}

, (9)

where the 𝑎𝑖 follow uniform distribution on [0, 1]. Marrel et al. (2008) have used this function with all 𝑎𝑖 being fixed to 1∕2 as a
test function to compare emulation methods because it has strongly nonlinear and non-monotonic relationship.

The fifth batch of test functions is the 3-degree polynomials with randomly generated coefficients given by

𝑓 (𝐱) =
𝑝
∑

𝑖=1
𝛽𝑖(𝑥𝑖 − 𝑐𝑖) +

𝑝
∑

𝑖,𝑗=1
𝛽𝑖,𝑗 (𝑥𝑖 − 𝑐𝑖)(𝑥𝑗 − 𝑐𝑗 ) +

𝑝
∑

𝑖,𝑗,𝑘=1
𝛽𝑖,𝑗,𝑘(𝑥𝑖 − 𝑐𝑖)(𝑥𝑗 − 𝑐𝑗 )(𝑥𝑘 − 𝑐𝑘), (10)

where the 𝛽𝑖, 𝛽𝑖,𝑗 , and 𝛽𝑖,𝑗,𝑘 follow the uniform distribution on [−3, 3] and the 𝑐𝑖 follow the uniform distribution on [0, 1]. The sixth
and seventh batch of test functions is the same to the fifth batch of functions excepts that only 50% and 25% selected variables are
active, respectively. That is, the summation in (10) is on 𝑖 from 1 to 𝑝∕2 and from 1 to 𝑝∕4, respectively. Remark that the columns
of designs are shuffled before used and thus the variables selected are random.

For each test function, we generate two designs in 𝑝 = 40 for each method, the first with 80 points and the second with 256
points. However, for MmLLT the first design has 81 points. We assume that the input space is [0, 1]𝑝 and the levels of 𝑠-level designs
are 1∕(2𝑠), 3∕(2𝑠),… , (2𝑠 − 1)∕(2𝑠). Their results are similar to those from designs in levels 0, 1∕(𝑠 − 1),… , 1, which we omit. We fit
each data set with either the simple Kriging model (SK),

𝑓 (𝐱) = 𝛽0 +𝑍(𝐱), (11)

or the universal Kriging model (UK),

𝑓 (𝐱) = 𝛽0 +
𝑝
∑

𝑘=1
𝛽𝑘𝑥𝑘 +𝑍(𝐱), (12)

where 𝑍(𝐱) is a mean zero Gaussian process. We use the Matérn-type correlation function with the smoothness parameter being 5∕2
for the first batch of test functions and the Gaussian correlation function for the rest functions. The scale parameters of the Gaussian
processes and the coefficients of the linear trends from the UK model are estimated using the R package ‘‘RobustGaSP’’ (Gu et al.,
2020) with default settings. For each test function and each design, we estimate the integrated prediction error using at least 1000
testing samples that are uniformly and independently generated from [0, 1]𝑝.

Tables 1–7 provide averaged the integrated squared prediction errors for the seven batches of test functions. From the results,
when 𝑛 = 80, the HDD designs are excellent for all the seven batches of test functions excepts that HDD with 𝑠 = 2 is poor for the third
batch. OA designs in 𝑛 = 80, which consist of randomly selected columns of 2-level saturated orthogonal arrays, are substantially
worse than 2-level HDD designs.

On the other hand, when 𝑛 = 256, the OA designs, which are 2-level minimum aberration fractional factorial arrays, performs
robustly better than the 2-level HDD designs. The HDD designs are always among the best designs excepts OA, while HDD4 is the
most robust method among the HDD methods. Remark that although the HDD designs are slightly inferior to minimum aberration
8

fractional factorial arrays, the latter designs are not as flexible as HDD on sample size.
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Table 3
Averaged integrated prediction error from the SK model in (11) and the UK model in (12) when data are generated by (8).

n Model OA MmLLT MaxPro MmLH HDD2 HDD4 HDD8 HDD16

80 SK 1.038 1.818 0.578 0.533 1.073 0.563 0.514 0.520
80 UK 1.065 1.3 × 105 0.629 0.539 1.053 0.562 0.516 0.513
256 SK 0.736 0.431 0.460 0.434 0.759 0.441 0.448 0.455
256 UK 0.736 0.419 0.433 0.421 0.786 0.455 0.465 0.465

Table 4
Averaged integrated prediction error from the SK model in (11) and the UK model in (12) when data are generated from the G
function in (9).

n Model OA MmLLT MaxPro MmLH HDD2 HDD4 HDD8 HDD16

80 SK 18.87 16.8 15.12 15.89 12.17 13.06 13.53 12.92
80 UK 19.23 4.1 × 105 16.82 16.03 13.73 14.05 14.01 13.74
256 SK 9.57 10.42 11.30 10.17 9.79 10.26 10.65 10.60
256 UK 9.71 10.63 11.11 10.08 10.60 10.78 10.94 11.38

Table 5
Averaged integrated prediction error from the SK model in (11) and the UK model in (12) when data are generated from the
3-degree polynomials in (10) with all variables being active.

n Model OA MmLLT MaxPro MmLH HDD2 HDD4 HDD8 HDD16

80 SK 0.518 0.605 0.565 0.505 0.473 0.485 0.468 0.465
80 UK 0.546 2.2 × 106 0.581 0.526 0.462 0.472 0.449 0.457
256 SK 0.448 0.522 0.528 0.498 0.450 0.466 0.518 0.520
256 UK 0.446 0.501 0.505 0.472 0.458 0.479 0.544 0.554

Table 6
Averaged integrated prediction error from the SK model in (11) and the UK model in (12) when data are generated from the
3-degree polynomials in (10) with 20 active variables.

n Model OA MmLLT MaxPro MmLH HDD2 HDD4 HDD8 HDD16

80 SK 0.200 0.208 0.207 0.196 0.177 0.179 0.181 0.176
80 UK 0.209 3.6 × 105 0.219 0.193 0.171 0.171 0.175 0.173
256 SK 0.172 0.200 0.205 0.192 0.175 0.180 0.200 0.198
256 UK 0.171 0.193 0.195 0.183 0.177 0.184 0.212 0.211

From comparing the 𝑛 = 80 and 𝑛 = 256 cases, it seems that the HDD designs are more desirable when 𝑝∕𝑛 is relatively high. Here
both HDD2 and OA are binary unsaturated orthogonal arrays of strength two. Their only difference lies in the separation distance.
The fact that HDD2 is considerably better than OA when 𝑛 = 80 and OA is better than HDD2 when 𝑛 = 256 implies that designs
with high separation distance are indeed desirable in emulating high-dimensional computer experiments.

While MmLLT, MaxPro, and MmLH are excellent for some test functions, none of these methods works robustly well in all the
seven batches. We are astonished to see that MmLLT performs poorly when 𝑛 = 80 and there are strong linear trends, i.e., when
𝛾 = 5 or UK is used. In fact, the estimation on linear trends are very poor when the data set comes from MmLLT. The poor fits
are presumably due to the fact that each column of the MmLLT design in 𝑛 = 80 is fully confounded with another column with
correlation coefficient −1. This demonstrates the advantage of using a design with low, or ideally zero, absolute correlations.

While binary designs are poor for the third batch of test functions, for other test functions smaller 𝑠 in general leads to slightly
better performance. Overall, for the test functions we have tried, 𝑠 = 4 seems to be the most robust choice for HDD. Recall that
t is commonly believed that space-filling designs with higher number of levels are more desirable because from using them it is
ossible to capture stronger nonlinearity of the response surface. However, implied from the results this may not be valid for high-
imensional cases, in which it may not be feasible to model strong nonlinearity even if the design has many levels. Having better
eparation distance efficiency, our constructed binary and four-level designs thus become superior to eight-level and sixteen-level
esigns. Having said that, two levels may be too few and therefore four-levels designs are better. However, because the gap in
erformance is not substantial, the best choice of 𝑠 remains unclear.

. A real example

The Leslie model (Leslie, 1945) is one kind of widely used deterministic simulation model for estimating the population of species.
ts original motivating example is on estimating the age distribution of one class of brown rat called rattus norvegicus. The inputs
f the simulation model include the rate of fertility and mortality and initial population that are divided by successive intervals of
ime. The outputs of the model are the number of survivors of each age group after certain time.

In years past, the Leslie model has been developed into much more complex models. However, here we use the original model
9

ith the original example to compare space-filling designs because we believe its input–output relationship is representative of
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Table 7
Averaged integrated prediction error from the SK model in (11) and the UK model in (12) when data are generated from the
3-degree polynomials in (10) with 10 active variables.

n Model OA MmLLT MaxPro MmLH HDD2 HDD4 HDD8 HDD16

80 SK 0.082 0.067 0.085 0.081 0.071 0.072 0.072 0.073
80 UK 0.086 2.7 × 105 0.089 0.081 0.071 0.070 0.070 0.070
256 SK 0.069 0.080 0.081 0.077 0.071 0.072 0.079 0.079
256 UK 0.069 0.077 0.077 0.074 0.072 0.074 0.084 0.085

Table 8
Averaged integrated prediction error from the SK model in (11) and the UK model in (12) for the real example.

n Model OA MmLLT MaxPro MmLH HDD2 HDD4 HDD8 HDD16

80 SK 63.2 107.8 65.5 61.8 50.2 53.7 54.1 55.7
80 UK 75.7 6.6 × 108 74.4 68.0 67.2 63.5 62.5 62.9
256 SK 33.9 35.1 32.0 30.0 33.9 31.6 32.2 32.5
256 UK 38.5 42.6 41.5 37.9 41.6 34.4 40.3 37.9

many of its extensions. Here we choose the response to be the total number of survivors in millions after 30 months. We consider
40 covariates, 𝑥1,… , 𝑥40. For 𝑖 = 1,… , 20, 𝑥𝑖 = 𝑢𝑖𝑠𝑖 and 𝑠𝑖 gives the survival rate from month 𝑖 − 1 to month 𝑖 that are given in the
original data. Because the survival rate must not exceed one, we enforce that 𝑥𝑖 ≤ 1. For 𝑖 = 21,… , 39, 𝑥𝑖 = 𝑢𝑖𝑓𝑖−19 and 𝑓𝑖 gives
the fertility rate of individuals at month 𝑖 that are given in the original data. Remark that in the data the rats start to breed from
month 2 and thus the fertility rates of earlier months are zero and not considered to be covariates. The 𝑥40 = 1000𝑢40 gives the
initial number of rats. All these rats are assumed to be at month 0. Finally, we let the range of 𝑢𝑖 to be [.85, 1.15] for each 𝑖. In this
setting we essentially model the population size when the key parameters of the model deviate from that provided in the original
data for at most 15%. Here the high-dimensionality of the input space roots from the fact that the key rates are given in 21 time
units.

We fit Gaussian process models using 40-dimensional space-filling designs in the same way as in Section 4. Table 8 provides
averaged the integrated squared prediction errors for this example. From the results, HDD4 is certainly the best method when 𝑛 = 80
and one of the best methods when 𝑛 = 256. HDD designs of other numbers of levels are sightly inferior to HDD4. These results verify
that HDD is a useful method at least for some real applications.

6. Discussion

In this paper, we propose a novel method to construct high-dimensional high-separation distance designs. Many of our generated
designs are remarkably better than existing types of designs in separation distance efficiency. Moreover, from our construction the
balanceness, orthogonality, projection uniformity, flexibility in 𝑛 and 𝑝, and near-optimality in separation distance are achieved
simultaneously. In our simulations our newly proposed designs perform well in Kriging interpolation. While 𝑠 = 4 appears to be a
robust choice, it remains an unsolved problem on what is the optimal 𝑠 to choose.

In the paper we only consider designs with 𝑝 < 𝑛. It is not difficult to construct designs with 𝑝 ≥ 𝑛 by stacking two or more of
our proposed designs together. Since the bound on the separation distance is proportional to 𝑝, the combined design will be nearly
optimal in the separation distance if all ingredient designs are nearly optimal. However, the combined design will not be orthogonal,
as no design with 𝑝 > 𝑛 can. Nevertheless, it might be possible to construct high separation distance design in 𝑝 > 𝑛 that do not
have fully aliased column pairs. It is an interesting problem for future work.
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Appendix A. Supplementary data

Examples for our proposed algorithms, proofs of theorems, and additional theoretical results are provided in the supplementary
material.

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jspi.2024.106150.
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